
Optical Filters

Colour glass filter

Material / Specification: 538nm shortpass (Hoya B-410) **Range / Description:** 538FCS

KO BRINGING QUALITY INTO FOCUS

QUALITY APPROVED

KNIGHT OPTICAL

www.knightoptical.com | info@knightoptical.com | usasales@knightoptical.com

Knight Optical (UK) Limited © and Knight Optical USA LLC. Whilst every effort has been made to verify the information and data, Knight Optical can take no responsibility for its accuracy. All content on this page is protected under the Copyright, Designs and Patents Act 1988 and the Copyright © is owned by Knight Optical (UK) Limited 2011-2015. All rights are reserved. Reproduction of any content, by any means, without the express permission of the owner is prohibited by law. The KNIGHT OPTICAL name and/or mark and KO KNIGHT OPTICAL LOGO are the trademarks of Knight Optical (UK) Limited. Knight Optical (UK) Lit is an ISO registered company.

Optical Filters

Colour glass filter

Material / Specification: 538nm shortpass (Hoya B-410) Range / Description: 538FCS

Title: Colour Glass Filter (Shortpass) Material / Specification: Hoya B-410 - 538nm Range / Description: 538CS

											Catalog	Thickne	ess t=	2.5	mm	Reflec	tion Fac	ctor Pa	0.930	L.	Diagram	1-2		B-41	U
	Tran	smittan	ce (T) 8	Intern	al Trans	mittanc	e (T)	units :	(%)								_								
λnm	200	210	220	230	240	250	260	270	280	290	300	310	320	330	340	350	360	370	380	390	400	410	420	430	440
Т		- (.44	3.8	10.9	21.2	34.5	48.8	61.2	71.9	79.6	84.5	87.8	89.0	90.1	91.0	91.4	91.5	91.5	91.4	90.
τ							.47	4.1	11.7	22.8	37.1	52.5	65.8	77.3	85.6	90.9	94.4	95.7	96.9	97.8	98.3	98.4	98.4	98.3	97.
lom	450	460	470	480	490	500	510	520	530	540	550	560	570	580	590	600	610	620	630	640	650	660	670	680	69
T	89.4	89.0	87.8	85.0	80.7	75.4	68.9	61.0	52.1	43.9	33.6	24.0	16.7	10.7	6.7	3.0	1.0	.50	.39	.42	.28	.12	.13	.17	.1
τ	96.1	95.7	94.4	91.4	86.8	81.1	74.1	65.6	56.0	47.2	36.1	25.8	18.0	11.5	7.2	3.2	1.1	.54	.42	.45	.30	.13	.14	.18	.1
anan .	700	710	720	730	740	750	800	850	900	950	1,000	1,100	1,200	1,300	1,400	1,500	1,600	1,700	1,800	1,900	2,000	2,100	2,200	2,300	2.4
Т	.40	1.8	8.9	25.0	50.0	73.0	92.8	92.5	92.1	91.6	90.6	87.3	81.5	71.2	53.0	37.7	40.2	36.5	34.1	36.0	38.5	42.2	52.0	63.2	68.
7	.43	1.9	9.6	26.9	53.8	78.5	99.8	99.5	99.0	98.5	97.4	93.9	87.6	76.6	57.0	40.5	43.2	39.2	36.7	38.7	41.4	45.4	55.9	68.0	73.
	Refra	ctive In	dices																			At	be-Num	ber	
Symb	ol	i h			g	F'		F e			d			C'	C		r A'		t		1				
λnm		365.0	404.	7	135.8	480.	0	486.1	546.	1	587.6	589.	3 (643.8	656.	3 7	06.5	768.	2 1.	.014.0	1		$n_d = \frac{n_d}{n_d}$	-1 =67	
n		1.486	1.48	0	1.477	1.47	4	1.473	1.47	0	1.468	1.46	3	1.467	1.46	6							n _F -	nc	
	Color	Specific	ations	_						Prope	rties				2007.050				Tol	laranca	J s of Tra	nemitt	ance (T)		-
		x	y	Y	A		P.	1 9	Cher			The	mal		Mech	anical	Other		Wavele	ength	Maximu	Im Les	ss than 1	% Less t	hant
A	.1	94	.351	23.7	491		62		Dw	DA	To	T _s	-30/70	a 100/300	Hĸ	FA	S		for M Tran mitta	ns-	Trans	8	avelengt at Short- ave Side	atl	e Sid
С	1	61	100		40.1		57		3	4	410	500	70	79	420	120	2.27	S. 8			+ 10		is1 (nm)	-	
			.199	32.3	481	2	10		3		410	500						2	ATmax	(nm)	Tmax (%	01 1	IST (IIIII)	C1A	(nm)
Des	-	61	.215	32.3	481		56	1	3	4	410	500							410 ±		91 ± 3		250		(nm) 500
	.1	-	.215						3	4	410	500					de a de l								
	.1	61	.215								410														
	.1	61	.215								410	500													
	.1	61	.215						3		410	300													500
	.1	61	.215						3		410														(nm) 500
	.1	61	.215						3		410			\int											500
	.1	61	.215						3		410			ſ											500
	.1	61	.215						3		410														500
	.1	61	.215						3		410			ſ											500
	.1	61	.215						3		410														500
	.1	61	.215						3																
	.1	61	.215						3																500
	.1	61	.215																						500
	.1	61	.215						3																500
	.1	61	.215						3																500
	.1	61	.215						3																500

KNIGHT OPTICAL

ACS)

ISO 9001

\$

KO BRINGING QUALITY INTO FOCUS

www.knightoptical.com | info@knightoptical.com | usasales@knightoptical.com

Knight Optical (UK) Limited © and Knight Optical USA LLC. Whilst every effort has been made to verify the information and data, Knight Optical can take no responsibility for its accuracy. All content on this page is protected under the Copyright, Designs and Patents Act 1988 and the Copyright © is owned by Knight Optical (UK) Limited 2011-2015. All rights are reserved. Reproduction of any content, by any means, without the express permission of the owner is prohibited by law. The KNIGHT OPTICAL name and/or mark and KO KNIGHT OPTICAL LOGO are the trademarks of Knight Optical (UK) Limited. Knight Optical (UK) Ltd is an ISO registered company.

Ŵ